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SUMMARY

The present paper considers the problem of aerodynamic airfoil shape optimization where the shape of
an airfoil is to be determined such that a priori specified design criteria will be met to the best possible
extent. The design criteria are formulated by defining an objective or cost function, the minimum of
which represents the solution to the design problem. A survey is given of developments at NLR applying
the adjoint operator approach, utilizing a compressible inviscid flow model based on the Euler equations
and a compressible viscous flow model based on the Reynolds-averaged Navier–Stokes equations.
Computational results are presented for a two-point drag-reduction design problem. Copyright © 1999
John Wiley & Sons, Ltd.
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1. INTRODUCTION

At NLR, successful computational methods for the design of airfoils and wings in subsonic
and transonic flow have been developed following the residual-correction approach [1].
Essentially, these methods are based on solving an inverse problem, determining an airfoil or
wing shape such that it will generate a priori prescribed surface pressure distributions at given
operating conditions. The design goals, expressed in terms of these prescribed target pressure
distributions, are approximated to the best possible extent, taking into account additional
requirements with respect to the geometry. During the iteration process of solving the design
problem, for each new estimate of the airfoil or wing geometry, the surface pressure
distribution is analysed at each desired operating condition and from the differences with the
target pressure distributions a new estimate of the geometry is determined. This way of
specifying the design goals gives the designer direct control over local flow properties, but
constraints with respect to global characteristics as drag- or lift-coefficients are specified less
easily. The main advantage of the NLR residual-correction methods is the fact that in each
iteration step leading to a new estimate of the geometry only one flow computation is required.

A more straightforward, direct approach to solve the airfoil or wing design problem is
obtained by posing the design problem as the minimization (or maximization) problem of an
objective functional subject to a number of design constraints. The advantage of this approach
is that it offers a great deal of flexibility with respect to the form in which the design goals
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should be expressed; it is not restricted to design goals in terms of target pressure distributions.
Moreover, in principle any combination and number of appropriate design objectives may be
specified.

Usually, minimization problems are solved most efficiently by making use of the gradient of
the objective functional with respect to the design variables. If this gradient is determinied by
numerical differentiation, such as pioneered by Hicks et al. [2], the application of this type of
minimization is limited to problems involving only a small number of design variables, simply
because of otherwise prohibitively high computing costs. Gradient-based minimization involv-
ing larger numbers of design variables is feasible only when the gradient is determined
analytically as e.g. in Drela’s method for the design of airfoils in Euler flow, which is based on
Newton-iteration [3].

The most efficient approach to solve design problems formulated as optimization problems,
seems to be the approach based on optimal control theory, which is also commonly referred
to as the variational method, as described by Jameson for airfoil and wing design [4].
Following this type of approach (see e.g. [5–8]), a design method based on the Euler and
Reynolds-averaged Navier–Stokes (RANS) equations has been developed at NLR [9]. The
feasibility of the method is investigated for transonic single- and multi-point design problems.

The design problem is solved by means of an iteration process, involving at each iteration
step the solution of a flow problem for the state variables, the solution of an adjoint problem
for the adjoint variables and the determination of a new estimate of the geometry. In terms of
computational costs this approach comes in line with the residual-correction approach because
of the fact that for a geometry update in principle only one flow problem and one adjoint
problem (of about the same computational effort as the flow problem) have to be solved.

The design methodology presented in this paper takes advantage of the availability of a flow
solver and an optimization routine that requires the function value and gradient. The gradient
of the aerodynamic functional is computed by means of the variational method. The
formulation of the adjoint problem, the construction of an adjoint solver for obtaining the
Lagrange multipliers and the gradient, and the integration of the adjoint solver with the
existing flow solver and optimization routine form the main subject of the investigation.

This paper describes experiences obtained with applications of the present design method to
aerodynamic airfoil design problems utilizing a compressible inviscid flow model based on the
Euler equations and a compressible viscous flow model based on the RANS equations. The
capability of the approach to address multi-point design problems is demonstrated by
considering a two-point airfoil drag reduction problem for transonic flow.

2. FORMULATION OF THE GRADIENT BY MEANS OF THE VARIATIONAL
METHOD

The design problems are posed as optimization problems involving aerodynamic functionals
representing the lift (Cl), drag (Cd), and pitching moment (Cm) coefficients. These are defined
in terms of the pressure coefficient Cp obtained from the flow variables Q which satisfy the
flow equations.

The design variables consist of geometric parameters u (defining the airfoil geometry) and an
angle of attack a (defining the orientation of the free stream with respect to the airfoil
geometry). The optimal values of u and a are obtained by means of a gradient-based
optimization algorithm. The gradients of the aerodynamic functionals with respect to the
design variables u and a are computed by means of the variational method.
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The optimization problem being addressed can be written as follows1,

Minimize P(Q, u, a),

Subject to: A(Q, u, a)50, G(u)50, (1)

where P and A represent such aerodynamic functionals as lift, drag and pitching moment
coefficients, while the vector G represents geometric constraints. The geometric parameters u

and the angle of attack a are treated as the design variables, of which the optimal values are
to be determined.

Problem (1) is subject to the flow equations for a given (fixed) value of the Mach number
and Reynolds number, which impose an implicit dependency of the flow variables Q upon u

and a.
Problem (1) is to be solved by means of a gradient-based optimization algorithm. The

gradient of G can be obtained rather easily by direct analytical differentiation, whereas the
gradients of the aerodynamic functionals P and A are computed by means of the variational
method. This implies that an adjoint problem must be formulated, the solution of which is
used for evaluating the gradients. Figure 1 illustrates the nomenclature. The time-dependent
flow equations can be written in the form:

(Q
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=9a ·Fa =0, in V, (2)

where Q is the vector of conservative flow variables:
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At the steady state, Equation (2) becomes

Figure 1. Domain definition of the flow field.

1 For the sake of brevity, the Mach number and Reynolds number (in the case of viscous flow) do not appear because
these are assumed fixed.
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9a ·Fa =0. (4)

The vector Fa represents the mass, momentum, and energy fluxes. The flow equations are
subject to the boundary conditions on the airfoil surface Sa, which can be expressed as a vector
equation:

B=0. (5)

For an in6iscid flow, Equation (2) represents the Euler equations, while Equation (5) represents
the zero normal-velocity boundary condition such that B is a one-dimensional vector. For a
6iscous flow, Equation (2) represents the Reynolds-Averaged Navier–Stokes equations, while
Equation (5) represents the no-slip and the adiabatic wall boundary conditions. In this case, B
is a vector with three elements.

For the design cases to be considered, a general form of aerodynamic functionals is assumed
as follows

F=
&

S a

c(p, u, a) dS, (6)

where c is a function of the pressure p, the design variables u, and the angle of attack a. The
notation F applies to both P and A of the problem statement (1).

Employing the variational method means that the adjoint equation must be formulated, the
solution of which provides the Lagrange multipliers. These in turn are used in evaluating the
gradient of the functional with respect to the design variables u and a.

As p is obtained from Q which satisfies the steady state flow equations, the functional F is
independent of the transient state. Therefore, it is sufficient to consider the steady state flow
equation (4) and boundary condition (5) in the definition of a Lagrangian L as follows,

L=
&

S a

c dS+
&

V
l · (9a ·Fa ) dV+

&
S a

Y ·B dS, (7)

where l and Y are the Lagrange multipliers. l is a vector with four components defined in V,
each component of which may be considered as corresponding to a component of the
conservative flow variables Q. The Lagrange multiplier Y is defined on Sa In the case of
inviscid flow, Y consists of one element, whereas for viscous flow Y consists of three elements.

In order to derive the adjoint and gradient equations, one must evaluate the variation of L,
denoted as dL, due to the independent variables l, Y, Q, u and a :

dL=dLl+dLY+dLQ+dLu+dLa.

The notation dLl refers to the variation of dL implied by the variation of l while the other
variables are kept fixed, and similarly for dLY, etc. The contribution of the variation of l and
Y are eliminated as the flow equation (4) and the boundary condition (5) are satisfied. The
adjoint equation and boundary conditions are obtained by setting dLQ equal to zero, which
also leads to the relations between Y and l.

After solving the flow and the adjoint equations, providing the values of Q, l and Y, the
variation of L becomes

dL=dLu+dLa. (8)

By direct analytical differentiation, the gradient of F with respect to u and to a can be
obtained. These are expressed as, respectively,
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dF

du
= lim

du�0

dLu

du
=
(L

(u
, (9)

and

dF

da
= lim

du�0

dLa

da
=
(L

(a
. (10)

For the case with a fixed (design) lift coefficient, the following condition holds�dCl

da

�
da+

�dCl

du

�
·du=0.

This implies that one variable out of the set of the components of u and a can be chosen to
be dependent. A convenient choice is to take a as the dependent variable, giving

da= −
�dCl

da

�−1�dCl

du

�
·du. (11)

The variation of the Lagrangian is now expressed as

dL=dLu+dLa=
�dF

du

�
·du+

�dF

da

�
·da. (12)

Substitution of Equation (11) gives

dL=
�dF

du
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Hence, for a fixed Cl the gradient of F with respect to the design variables u can be obtained
as �dF

du

�
C l

=
dF

du
−
�dF

da

��dCl

da

�−1�dCl

du

�
, (13)

with (dF/du) given by Equation (9), and (dF/da) by Equation (10). The expression for
(dCl/da) and (dCl/du) are obtained by taking Cl for F.

3. COMPUTER IMPLEMENTATION

The present investigation makes use of the HI-TASK code of the National Aerospace
Laboratory NLR [10,11]. HI-TASK, which stands for Highly-Integrated Turbulent Airflow
Simulation Kernel, is basically a two-dimensional flow solver for single-element airfoil applica-
tions based on the Reynolds-averaged Navier–Stokes (RANS) equations, employing the
Baldwin–Lomax turbulence model. The Euler mode of the code is obtained by dropping the
viscous fluxes.

The discretization in HI-TASK is based on a cell-vertex finite volume scheme equivalent
with a central-difference scheme. The steady state flow solution is obtained by integrating the
time-dependent flow equations using the five-stage Runge–Kutta scheme with a V-cycle
multigrid procedure. For the stability of the central-difference scheme, 4th order dissipation
terms are introduced, while 2nd order dissipation terms are added for capturing shock waves.
The dissipation terms are formulated based on the work of Jameson et al. [12].

The discretization of the adjoint equations and the computer implementation are chosen
such that maximum advantage is taken of the existing features of HI-TASK. The philosophy
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is to treat the flow solver as a black box. This leads to a similar discretization scheme for
solving the adjoint equation as that for solving the flow equations. Also, the dissipation terms
can be formulated in the same way as that for the flow equations.

The present investigation employs the optimization routine FSQP, which stands for Feasible
Sequential Quadratic Programming. This routine is based on a modified Sequential Quadratic
Programming (SQP) algorithm capable of generating feasible iterates. The routine requires as
input the objective and constraint function values and the gradients. The detailed description
of the algorithm used in FSQP is given in [13]. Apart from the consideration that SQP is
generally known to be the most cost-effective method for non-linear constrained optimization,
the reasons for selecting FSQP are the following:

(i) FSQP generates feasible iterates with respect to constraints. This has a practical advan-
tage that, if the optimization process should be stopped at an intermediate stage, the last
iterate would still be useful in the sense that it would represent an improvement over the
initial design while the constraints are satisfied.

(ii) If the initial design provided by the designer is infeasible for some inequality constraints,
FSQP first generates a feasible iterate before minimizing the objective. This offers
convenience if the designer is primarily concerned about the constraints.

(iii) FSQP has the capability of solving multi-objective optimization problems in a min–max
sense. This is suitable for dealing with multi-point aerodynamic design to be described in
the Section 4.

In order to solve an airfoil design problem, the airfoil geometry must be parameterized. A
parameterization scheme should satisfy the following requirements:

(i) In principle there should be no restriction on the possible number of design variables. This
is desirable in order not to restrict the design space to a certain family of airfoil shapes.

(ii) The surface curvature must be continuous to ensure smoothness of the airfoil surface.
This is desirable so as to avoid numerical irregularities that could be implied by surface
discontinuities.

(iii) The design variables should preferably have (in an approximate sense) a linear relation-
ship with the surface curvature. This is expected to have an effect of reducing the
non-linearity of the optimization problem, considering that, for local subsonic flow, a
local variation of the surface curvature is proportional (in an approximate sense) with the
local variation of pressure [14,15], while the aerodynamic functionals of interest are
defined in terms of pressure. This consideration can be expected also to be relevant for
transonic conditions because the flow is locally subsonic over a large part of the airfoil
surface.

In the present investigation, these requirements have led to a shape parameterization scheme
which generates an airfoil geometry with C2 surface continuity [9].

4. COMPUTATIONAL RESULTS

In order to demonstrate the suitability of the present design method for multi-point airfoil
design problems, Case ME and MN are defined for an inviscid and a viscous flow,
respectively. The design points are specified as follows:

� Design Point 1 (DP-1): Cl=1, M�=0.72, Re=6.5×106.
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Figure 2. Membership functions.

� Design Point 2 (DP-2): Cl=0.5, M�=0.78, Re=6.5×106.

The Reynolds number, Re, is not applicable in the Euler case. The objective is to reduce the
pressure drag (Cd1

and Cd2
while satisfying constraints on the pitching moments (Cm1

and Cm2
)

in both design points. Geometric constraints are imposed, limiting the value of the leading-
edge radius, the trailing-edge angle, and the cross-sectional area of the airfoil. The optimiza-
tion starts with an initial airfoil specified as a best-fit of the RAE 2822 airfoil. The
optimization begins with all constraints active.

In order to be representative for a real multi-disciplinary design practice, in which compro-
mise might have to be accepted, it is assumed that, in reducing the drag, a certain amount of
violation of the pitching moment constraint (i.e. the aerodynamic constraint) is allowed in
favour of strictly satisfying the geometric constraint (e.g. due to structural requirements).
Then, the multi-point design problem can be posed as a fuzzy optimization problem. Here, the
so-called membership function m, 05m51, is introduced for representing the aerodynamic
objective and constraint.

The form of membership function for the drag to be minimized is depicted in Figure 2(a),
while that for the pitching moment constraint is shown in Figure 2(b). These apply to both
design points, which can be interpreted as that a 75% reduction of drag is desirable while
allowing a 10% violation of the pitching moment constraints.
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Figure 3. Computational result for Case ME. (a) Cd at DP-1; (b) Cd at DP-2; (c) Cm at DP-1; (d) Cm at DP-2; (e) Cp

distribution at DP-1; (f) Cp distribution at DP-2.
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In a fuzzy optimization involving a single membership function, one attempts to achieve the
highest possible value of the membership function. If there are n membership functions, one
attempts to achieve the highest possible value of the minimum amongst the membership
functions, i.e.

Maximize min(m1, . . . , mn).

This can be interpreted as that, at any intermediate stage of the optimization process, the
criterion with the worst quality (i.e. with the smallest membership function) will be improved
(i.e. maximized) ignoring (temporarily) the other criteria.

For the design case being considered, the fuzzy optimization problem can be expressed as a
min–max problem as follows,

Minimize max(−m(Cd1
), −m(Cd2

), −m(Cm1
), −m(Cm2

))

subject to: G50 (14)

where G is the vector of geometric constraints, It is noted that the equivalent min–max form
has been chosen in order to maintain the compatibility with the optimization routine FSQP
which is a minimizer.

4.1. Multi-point design based on the Euler equations

The drag and pitching moment coefficients are shown in Figure 3, An empty circle, referred
to as ‘Evaluated’, represents one geometry and one flow analysis. A cross, referred to as ‘New
iterate’, indicates that the corresponding geometry and flow analysis are used by the optimiza-
tion algorithm as a basis for finding the next iterate. The gradient needs to be computed only
for the crossed circles. The process from one crossed circle to another represents a so-called
line search. As can be seen in the Cp distributions, the shock waves are indeed weaker in the
final iterate. The optimization process was stopped after a maximum number of 20 flow
analyses in a design point was exceeded. The obtained airfoil geometry is shown in Figure 4(a).

Figure 4. Computational result for Case ME. (a) Airfoil geometry; (b) membership function history.
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Figure 4(b) shows the history of the membership functions. In fuzzy optimization, the
minimum amongst the membership function values corresponds to the most important
criterion. The figure indicates that the membership function value of the pitching moment
constraints is not the minimum for most iterates. Hence, for most iterates, the pitching
moment constraints are not considered as important. This can be interpreted as that the 10%
‘leeway’ provides ample room for the reduction of drag. The figure also indicates that, in the
early stages of optimization, the drag in DP-2 was considered more important than in the
other design point. This role is switched at the 5th iteration, where the first design point
became more important. It is also indicated that taking one criterion (objective or constraint)
as the most important one, does not necessarily mean that the other criteria must be
compromised (e.g. from the 3rd to the 4th iteration all criteria are improved). As a matter of
fact, the change in membership function from one iteration to another gives an indication of
the ‘sensitivity’ of the associated criterion with respect to the most important one.

In the final result a balanced reduction of drag is obtained, i.e. about 25 and 28% reduction
in the first and the second design point, respectively. This is accompanied by about 3 and 5%
violation of the pitching moment constraints in the respective design points. The balanced
reduction of drag is an expected result, because the drag values in the two design points are
initially considered as equally bad, while it is desired to obtain an equal amount of improve-
ment (75% reduction of drag).

4.2. Multi-point design based on the RANS equations

The drag and pitching moment coefficients are shown in Figure 5. Like in the Euler case, a
balanced reduction of drag values has again been obtained, but with a smaller amount than for
the inviscid case. About 12 and 10% drag reduction in the first and the second design point is
achieved, respectively. This is accompanied by about 7 and 7.5% violation of the pitching
moment constraints in the respective design points. In agreement with the drag reduction, the
shock waves appear to be slightly weaker in the final Cp distributions.

5. CONCLUSIONS

The results given above indicate that the present method represents a viable approach for
solving constrained transonic aerodynamic design (pressure drag reduction) problems, based
on the compressible inviscid and viscous flow models described by the Euler and the RANS
equations, respectively. The possibility for incorporating both aerodynamic and geometric
constraints is of great practical value, since in real design practice one is always confronted
with such design constraints.

The computational results indicate that (both aerodynamic and geometric) constraints tend
to be more stringent in the case of the viscous (RANS) flow model. This is to be expected,
since in the Euler case there are no restrictions on the local pressure gradient while in the
RANS case these are limited by the ability of the boundary-layer to cope with them without
(significant) separation.

The complexity of multi-point design problems is not only incurred by conflicting aerody-
namic objectives, but also by restrictions imposed by aerodynamic constraints. The fuzzy
optimization method appears to be effective in alleviating the level of problem complexity,
because the objectives and constraints are treated in the same way as the set of criteria which
have to be achieved. This is measured in terms of membership functions. The results
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Figure 5. Computational result for Case MN. (a) Cd at DP-1; (b) Cd at DP-2; (c) Cm at DP-1; (d) Cm at DP-2; (e)
Cp distribution at DP-1; (f) Cp distribution at DP-2.
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demonstrate that allowing relatively small constraint violations can lead to significant improve-
ments in the objectives.

In the test cases considered in the present investigation, the design space was defined by 11
design variables. The sensitivity of the solutions to the number of design variables has not been
investigated.

The present methodology is not limited to two-dimensional single airfoil problems, but can
be extended in order to deal with multi-component airfoils and three-dimensional design
problems. This would imply a drastic increase in the number of design variables. Then, there
might be a need for an optimization routine dedicated to large-scale optimization problems.
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